HW8 Complete
This commit is contained in:
0
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__init__.py
vendored
Normal file
0
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__init__.py
vendored
Normal file
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/__init__.cpython-37.pyc
vendored
Normal file
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/__init__.cpython-37.pyc
vendored
Normal file
Binary file not shown.
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-37.pyc
vendored
Normal file
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-37.pyc
vendored
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_random.cpython-37.pyc
vendored
Normal file
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_random.cpython-37.pyc
vendored
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-37.pyc
vendored
Normal file
BIN
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-37.pyc
vendored
Normal file
Binary file not shown.
0
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/__init__.py
vendored
Normal file
0
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/__init__.py
vendored
Normal file
Binary file not shown.
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/mt19937-testset-1.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/mt19937-testset-1.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/mt19937-testset-2.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/mt19937-testset-2.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/pcg64-testset-1.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/pcg64-testset-1.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/pcg64-testset-2.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/pcg64-testset-2.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/philox-testset-1.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/philox-testset-1.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/philox-testset-2.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/philox-testset-2.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/sfc64-testset-1.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/sfc64-testset-1.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/sfc64-testset-2.csv
vendored
Normal file
1001
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/data/sfc64-testset-2.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
425
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_direct.py
vendored
Normal file
425
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_direct.py
vendored
Normal file
@@ -0,0 +1,425 @@
|
||||
import os
|
||||
from os.path import join
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_equal, assert_allclose, assert_array_equal,
|
||||
assert_raises)
|
||||
import pytest
|
||||
|
||||
from numpy.random import (
|
||||
Generator, MT19937, PCG64, Philox, RandomState, SeedSequence, SFC64,
|
||||
default_rng
|
||||
)
|
||||
from numpy.random._common import interface
|
||||
|
||||
try:
|
||||
import cffi # noqa: F401
|
||||
|
||||
MISSING_CFFI = False
|
||||
except ImportError:
|
||||
MISSING_CFFI = True
|
||||
|
||||
try:
|
||||
import ctypes # noqa: F401
|
||||
|
||||
MISSING_CTYPES = False
|
||||
except ImportError:
|
||||
MISSING_CTYPES = False
|
||||
|
||||
if sys.flags.optimize > 1:
|
||||
# no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1
|
||||
# cffi cannot succeed
|
||||
MISSING_CFFI = True
|
||||
|
||||
|
||||
pwd = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
|
||||
def assert_state_equal(actual, target):
|
||||
for key in actual:
|
||||
if isinstance(actual[key], dict):
|
||||
assert_state_equal(actual[key], target[key])
|
||||
elif isinstance(actual[key], np.ndarray):
|
||||
assert_array_equal(actual[key], target[key])
|
||||
else:
|
||||
assert actual[key] == target[key]
|
||||
|
||||
|
||||
def uniform32_from_uint64(x):
|
||||
x = np.uint64(x)
|
||||
upper = np.array(x >> np.uint64(32), dtype=np.uint32)
|
||||
lower = np.uint64(0xffffffff)
|
||||
lower = np.array(x & lower, dtype=np.uint32)
|
||||
joined = np.column_stack([lower, upper]).ravel()
|
||||
out = (joined >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint53(x):
|
||||
x = np.uint64(x) >> np.uint64(16)
|
||||
x = np.uint32(x & np.uint64(0xffffffff))
|
||||
out = (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint32(x):
|
||||
return (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
|
||||
|
||||
def uniform32_from_uint(x, bits):
|
||||
if bits == 64:
|
||||
return uniform32_from_uint64(x)
|
||||
elif bits == 53:
|
||||
return uniform32_from_uint53(x)
|
||||
elif bits == 32:
|
||||
return uniform32_from_uint32(x)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def uniform_from_uint(x, bits):
|
||||
if bits in (64, 63, 53):
|
||||
return uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
return uniform_from_uint32(x)
|
||||
|
||||
|
||||
def uniform_from_uint64(x):
|
||||
return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0)
|
||||
|
||||
|
||||
def uniform_from_uint32(x):
|
||||
out = np.empty(len(x) // 2)
|
||||
for i in range(0, len(x), 2):
|
||||
a = x[i] >> 5
|
||||
b = x[i + 1] >> 6
|
||||
out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0
|
||||
return out
|
||||
|
||||
|
||||
def uniform_from_dsfmt(x):
|
||||
return x.view(np.double) - 1.0
|
||||
|
||||
|
||||
def gauss_from_uint(x, n, bits):
|
||||
if bits in (64, 63):
|
||||
doubles = uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
doubles = uniform_from_uint32(x)
|
||||
else: # bits == 'dsfmt'
|
||||
doubles = uniform_from_dsfmt(x)
|
||||
gauss = []
|
||||
loc = 0
|
||||
x1 = x2 = 0.0
|
||||
while len(gauss) < n:
|
||||
r2 = 2
|
||||
while r2 >= 1.0 or r2 == 0.0:
|
||||
x1 = 2.0 * doubles[loc] - 1.0
|
||||
x2 = 2.0 * doubles[loc + 1] - 1.0
|
||||
r2 = x1 * x1 + x2 * x2
|
||||
loc += 2
|
||||
|
||||
f = np.sqrt(-2.0 * np.log(r2) / r2)
|
||||
gauss.append(f * x2)
|
||||
gauss.append(f * x1)
|
||||
|
||||
return gauss[:n]
|
||||
|
||||
def test_seedsequence():
|
||||
from numpy.random._bit_generator import (ISeedSequence,
|
||||
ISpawnableSeedSequence,
|
||||
SeedlessSeedSequence)
|
||||
|
||||
s1 = SeedSequence(range(10), spawn_key=(1, 2), pool_size=6)
|
||||
s1.spawn(10)
|
||||
s2 = SeedSequence(**s1.state)
|
||||
assert_equal(s1.state, s2.state)
|
||||
assert_equal(s1.n_children_spawned, s2.n_children_spawned)
|
||||
|
||||
# The interfaces cannot be instantiated themselves.
|
||||
assert_raises(TypeError, ISeedSequence)
|
||||
assert_raises(TypeError, ISpawnableSeedSequence)
|
||||
dummy = SeedlessSeedSequence()
|
||||
assert_raises(NotImplementedError, dummy.generate_state, 10)
|
||||
assert len(dummy.spawn(10)) == 10
|
||||
|
||||
|
||||
class Base(object):
|
||||
dtype = np.uint64
|
||||
data2 = data1 = {}
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = []
|
||||
|
||||
@classmethod
|
||||
def _read_csv(cls, filename):
|
||||
with open(filename) as csv:
|
||||
seed = csv.readline()
|
||||
seed = seed.split(',')
|
||||
seed = [int(s.strip(), 0) for s in seed[1:]]
|
||||
data = []
|
||||
for line in csv:
|
||||
data.append(int(line.split(',')[-1].strip(), 0))
|
||||
return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)}
|
||||
|
||||
def test_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data1['data'])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw()
|
||||
assert_equal(uints, self.data1['data'][0])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data2['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data2['data'])
|
||||
|
||||
def test_random_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(output=False)
|
||||
assert uints is None
|
||||
uints = bit_generator.random_raw(1000, output=False)
|
||||
assert uints is None
|
||||
|
||||
def test_gauss_inv(self):
|
||||
n = 25
|
||||
rs = RandomState(self.bit_generator(*self.data1['seed']))
|
||||
gauss = rs.standard_normal(n)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data1['data'], n, self.bits))
|
||||
|
||||
rs = RandomState(self.bit_generator(*self.data2['seed']))
|
||||
gauss = rs.standard_normal(25)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data2['data'], n, self.bits))
|
||||
|
||||
def test_uniform_double(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
def test_uniform_float(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform32_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform32_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
def test_repr(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in repr(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') in repr(rs)
|
||||
|
||||
def test_str(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in str(rs)
|
||||
assert str(self.bit_generator.__name__) in str(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') not in str(rs)
|
||||
|
||||
def test_pickle(self):
|
||||
import pickle
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
bitgen_pkl = pickle.dumps(bit_generator)
|
||||
reloaded = pickle.loads(bitgen_pkl)
|
||||
reloaded_state = reloaded.state
|
||||
assert_array_equal(Generator(bit_generator).standard_normal(1000),
|
||||
Generator(reloaded).standard_normal(1000))
|
||||
assert bit_generator is not reloaded
|
||||
assert_state_equal(reloaded_state, state)
|
||||
|
||||
ss = SeedSequence(100)
|
||||
aa = pickle.loads(pickle.dumps(ss))
|
||||
assert_equal(ss.state, aa.state)
|
||||
|
||||
def test_invalid_state_type(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator.state = {'1'}
|
||||
|
||||
def test_invalid_state_value(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
state['bit_generator'] = 'otherBitGenerator'
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator.state = state
|
||||
|
||||
def test_invalid_init_type(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_types:
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_invalid_init_values(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_values:
|
||||
with pytest.raises((ValueError, OverflowError)):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_benchmark(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
bit_generator._benchmark(1)
|
||||
bit_generator._benchmark(1, 'double')
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator._benchmark(1, 'int32')
|
||||
|
||||
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
|
||||
def test_cffi(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
cffi_interface = bit_generator.cffi
|
||||
assert isinstance(cffi_interface, interface)
|
||||
other_cffi_interface = bit_generator.cffi
|
||||
assert other_cffi_interface is cffi_interface
|
||||
|
||||
@pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available')
|
||||
def test_ctypes(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
ctypes_interface = bit_generator.ctypes
|
||||
assert isinstance(ctypes_interface, interface)
|
||||
other_ctypes_interface = bit_generator.ctypes
|
||||
assert other_ctypes_interface is ctypes_interface
|
||||
|
||||
def test_getstate(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
alt_state = bit_generator.__getstate__()
|
||||
assert_state_equal(state, alt_state)
|
||||
|
||||
|
||||
class TestPhilox(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-2.csv'))
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(1, None, 1), (-1,), (None, None, 2 ** 257 + 1)]
|
||||
|
||||
def test_set_key(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
keyed = self.bit_generator(counter=state['state']['counter'],
|
||||
key=state['state']['key'])
|
||||
assert_state_equal(bit_generator.state, keyed.state)
|
||||
|
||||
|
||||
class TestPCG64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_advance_symmetry(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
state = rs.bit_generator.state
|
||||
step = -0x9e3779b97f4a7c150000000000000000
|
||||
rs.bit_generator.advance(step)
|
||||
val_neg = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(2**128 + step)
|
||||
val_pos = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(10 * 2**128 + step)
|
||||
val_big = rs.integers(10)
|
||||
assert val_neg == val_pos
|
||||
assert val_big == val_pos
|
||||
|
||||
|
||||
class TestMT19937(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.bits = 32
|
||||
cls.dtype = np.uint32
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv'))
|
||||
cls.seed_error_type = ValueError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_seed_float_array(self):
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([-np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi, -np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([0, np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, [np.pi])
|
||||
assert_raises(TypeError, self.bit_generator, [0, np.pi])
|
||||
|
||||
def test_state_tuple(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
bit_generator = rs.bit_generator
|
||||
state = bit_generator.state
|
||||
desired = rs.integers(2 ** 16)
|
||||
tup = (state['bit_generator'], state['state']['key'],
|
||||
state['state']['pos'])
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
tup = tup + (0, 0.0)
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
|
||||
|
||||
class TestSFC64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
|
||||
class TestDefaultRNG(object):
|
||||
def test_seed(self):
|
||||
for args in [(), (None,), (1234,), ([1234, 5678],)]:
|
||||
rg = default_rng(*args)
|
||||
assert isinstance(rg.bit_generator, PCG64)
|
||||
|
||||
def test_passthrough(self):
|
||||
bg = Philox()
|
||||
rg = default_rng(bg)
|
||||
assert rg.bit_generator is bg
|
||||
rg2 = default_rng(rg)
|
||||
assert rg2 is rg
|
||||
assert rg2.bit_generator is bg
|
||||
57
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_extending.py
vendored
Normal file
57
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_extending.py
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
import os, sys
|
||||
import pytest
|
||||
import warnings
|
||||
import shutil
|
||||
import subprocess
|
||||
|
||||
try:
|
||||
import cffi
|
||||
except ImportError:
|
||||
cffi = None
|
||||
|
||||
if sys.flags.optimize > 1:
|
||||
# no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1
|
||||
# cffi cannot succeed
|
||||
cffi = None
|
||||
|
||||
try:
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# numba issue gh-4733
|
||||
warnings.filterwarnings('always', '', DeprecationWarning)
|
||||
import numba
|
||||
except ImportError:
|
||||
numba = None
|
||||
|
||||
try:
|
||||
import cython
|
||||
from Cython.Compiler.Version import version as cython_version
|
||||
except ImportError:
|
||||
cython = None
|
||||
else:
|
||||
from distutils.version import LooseVersion
|
||||
# Cython 0.29.14 is required for Python 3.8 and there are
|
||||
# other fixes in the 0.29 series that are needed even for earlier
|
||||
# Python versions.
|
||||
# Note: keep in sync with the one in pyproject.toml
|
||||
required_version = LooseVersion('0.29.14')
|
||||
if LooseVersion(cython_version) < required_version:
|
||||
# too old or wrong cython, skip the test
|
||||
cython = None
|
||||
|
||||
@pytest.mark.skipif(cython is None, reason="requires cython")
|
||||
@pytest.mark.slow
|
||||
def test_cython(tmp_path):
|
||||
examples = os.path.join(os.path.dirname(__file__), '..', '_examples')
|
||||
# CPython 3.5 and below does not handle __fspath__ well: see bpo-26027
|
||||
shutil.copytree(examples, str(tmp_path / '_examples'))
|
||||
subprocess.check_call([sys.executable, 'setup.py', 'build'],
|
||||
cwd=str(tmp_path / '_examples' / 'cython'))
|
||||
|
||||
@pytest.mark.skipif(numba is None or cffi is None,
|
||||
reason="requires numba and cffi")
|
||||
def test_numba():
|
||||
from numpy.random._examples.numba import extending
|
||||
|
||||
@pytest.mark.skipif(cffi is None, reason="requires cffi")
|
||||
def test_cffi():
|
||||
from numpy.random._examples.cffi import extending
|
||||
2250
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_generator_mt19937.py
vendored
Normal file
2250
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_generator_mt19937.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
158
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py
vendored
Normal file
158
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py
vendored
Normal file
@@ -0,0 +1,158 @@
|
||||
import sys
|
||||
from numpy.testing import (assert_, assert_array_equal)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import Generator, MT19937
|
||||
|
||||
mt19937 = Generator(MT19937())
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = mt19937.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(mt19937.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(mt19937.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems
|
||||
assert_(mt19937.hypergeometric(*args) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
mt19937 = Generator(MT19937(0))
|
||||
rvsn = mt19937.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = mt19937.permutation(12)
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
b = mt19937.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
mt19937 = Generator(MT19937(12345))
|
||||
shuffled = list(t)
|
||||
mt19937.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[2], t[0], t[3], t[1]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom BitGenerator does not call into global state
|
||||
res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4])
|
||||
for i in range(3):
|
||||
mt19937 = Generator(MT19937(i))
|
||||
m = Generator(MT19937(4321))
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
mt19937.multivariate_normal([0], [[0]], size=1)
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
mt19937 = Generator(MT19937(1234567890))
|
||||
x = mt19937.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = mt19937.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
with pytest.raises(ValueError):
|
||||
mt19937.choice(a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
orig = np.arange(3).view(N)
|
||||
perm = mt19937.permutation(orig)
|
||||
assert_array_equal(perm, np.array([2, 0, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
m = M()
|
||||
perm = mt19937.permutation(m)
|
||||
assert_array_equal(perm, np.array([4, 1, 3, 0, 2]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_gamma_0(self):
|
||||
assert mt19937.standard_gamma(0.0) == 0.0
|
||||
assert_array_equal(mt19937.standard_gamma([0.0]), 0.0)
|
||||
|
||||
actual = mt19937.standard_gamma([0.0], dtype='float')
|
||||
expected = np.array([0.], dtype=np.float32)
|
||||
assert_array_equal(actual, expected)
|
||||
1674
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_random.py
vendored
Normal file
1674
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_random.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1967
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_randomstate.py
vendored
Normal file
1967
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_randomstate.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
210
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_randomstate_regression.py
vendored
Normal file
210
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_randomstate_regression.py
vendored
Normal file
@@ -0,0 +1,210 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
from numpy import random
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
random.seed(0)
|
||||
rvsn = random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
random.seed(1234)
|
||||
a = random.permutation(12)
|
||||
random.seed(1234)
|
||||
b = random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
random.multivariate_normal([0], [[0]], size=1)
|
||||
random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
random.seed(1234567890)
|
||||
x = random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
random.seed(1)
|
||||
m = M()
|
||||
perm = random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_warns_byteorder(self):
|
||||
# GH 13159
|
||||
other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
|
||||
with pytest.deprecated_call(match='non-native byteorder is not'):
|
||||
random.randint(0, 200, size=10, dtype=other_byteord_dt)
|
||||
|
||||
def test_named_argument_initialization(self):
|
||||
# GH 13669
|
||||
rs1 = np.random.RandomState(123456789)
|
||||
rs2 = np.random.RandomState(seed=123456789)
|
||||
assert rs1.randint(0, 100) == rs2.randint(0, 100)
|
||||
|
||||
def test_choice_retun_dtype(self):
|
||||
# GH 9867
|
||||
c = np.random.choice(10, p=[.1]*10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, p=[.1]*10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
|
||||
@pytest.mark.skipif(np.iinfo('l').max < 2**32,
|
||||
reason='Cannot test with 32-bit C long')
|
||||
def test_randint_117(self):
|
||||
# GH 14189
|
||||
random.seed(0)
|
||||
expected = np.array([2357136044, 2546248239, 3071714933, 3626093760,
|
||||
2588848963, 3684848379, 2340255427, 3638918503,
|
||||
1819583497, 2678185683], dtype='int64')
|
||||
actual = random.randint(2**32, size=10)
|
||||
assert_array_equal(actual, expected)
|
||||
|
||||
def test_p_zero_stream(self):
|
||||
# Regression test for gh-14522. Ensure that future versions
|
||||
# generate the same variates as version 1.16.
|
||||
np.random.seed(12345)
|
||||
assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]),
|
||||
[0, 0, 0, 1, 1])
|
||||
|
||||
def test_n_zero_stream(self):
|
||||
# Regression test for gh-14522. Ensure that future versions
|
||||
# generate the same variates as version 1.16.
|
||||
np.random.seed(8675309)
|
||||
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[3, 4, 2, 3, 3, 1, 5, 3, 1, 3]])
|
||||
assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)),
|
||||
expected)
|
||||
158
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_regression.py
vendored
Normal file
158
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_regression.py
vendored
Normal file
@@ -0,0 +1,158 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import sys
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy import random
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.mtrand.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(np.random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
np.random.seed(0)
|
||||
rvsn = np.random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
np.random.seed(1234)
|
||||
a = np.random.permutation(12)
|
||||
np.random.seed(1234)
|
||||
b = np.random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
np.random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = np.random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
np.random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
np.random.multivariate_normal([0], [[0]], size=1)
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
np.random.seed(1234567890)
|
||||
x = np.random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
np.random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = np.random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
np.random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
np.random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
np.random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = np.random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
np.random.seed(1)
|
||||
m = M()
|
||||
perm = np.random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
54
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_seed_sequence.py
vendored
Normal file
54
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_seed_sequence.py
vendored
Normal file
@@ -0,0 +1,54 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from numpy.random import SeedSequence
|
||||
|
||||
|
||||
def test_reference_data():
|
||||
""" Check that SeedSequence generates data the same as the C++ reference.
|
||||
|
||||
https://gist.github.com/imneme/540829265469e673d045
|
||||
"""
|
||||
inputs = [
|
||||
[3735928559, 195939070, 229505742, 305419896],
|
||||
[3668361503, 4165561550, 1661411377, 3634257570],
|
||||
[164546577, 4166754639, 1765190214, 1303880213],
|
||||
[446610472, 3941463886, 522937693, 1882353782],
|
||||
[1864922766, 1719732118, 3882010307, 1776744564],
|
||||
[4141682960, 3310988675, 553637289, 902896340],
|
||||
[1134851934, 2352871630, 3699409824, 2648159817],
|
||||
[1240956131, 3107113773, 1283198141, 1924506131],
|
||||
[2669565031, 579818610, 3042504477, 2774880435],
|
||||
[2766103236, 2883057919, 4029656435, 862374500],
|
||||
]
|
||||
outputs = [
|
||||
[3914649087, 576849849, 3593928901, 2229911004],
|
||||
[2240804226, 3691353228, 1365957195, 2654016646],
|
||||
[3562296087, 3191708229, 1147942216, 3726991905],
|
||||
[1403443605, 3591372999, 1291086759, 441919183],
|
||||
[1086200464, 2191331643, 560336446, 3658716651],
|
||||
[3249937430, 2346751812, 847844327, 2996632307],
|
||||
[2584285912, 4034195531, 3523502488, 169742686],
|
||||
[959045797, 3875435559, 1886309314, 359682705],
|
||||
[3978441347, 432478529, 3223635119, 138903045],
|
||||
[296367413, 4262059219, 13109864, 3283683422],
|
||||
]
|
||||
outputs64 = [
|
||||
[2477551240072187391, 9577394838764454085],
|
||||
[15854241394484835714, 11398914698975566411],
|
||||
[13708282465491374871, 16007308345579681096],
|
||||
[15424829579845884309, 1898028439751125927],
|
||||
[9411697742461147792, 15714068361935982142],
|
||||
[10079222287618677782, 12870437757549876199],
|
||||
[17326737873898640088, 729039288628699544],
|
||||
[16644868984619524261, 1544825456798124994],
|
||||
[1857481142255628931, 596584038813451439],
|
||||
[18305404959516669237, 14103312907920476776],
|
||||
]
|
||||
for seed, expected, expected64 in zip(inputs, outputs, outputs64):
|
||||
expected = np.array(expected, dtype=np.uint32)
|
||||
ss = SeedSequence(seed)
|
||||
state = ss.generate_state(len(expected))
|
||||
assert_array_equal(state, expected)
|
||||
state64 = ss.generate_state(len(expected64), dtype=np.uint64)
|
||||
assert_array_equal(state64, expected64)
|
||||
808
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_smoke.py
vendored
Normal file
808
matPlotLib/env/lib/python3.7/site-packages/numpy/random/tests/test_smoke.py
vendored
Normal file
@@ -0,0 +1,808 @@
|
||||
import pickle
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_equal, assert_, assert_array_equal
|
||||
from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64)
|
||||
|
||||
@pytest.fixture(scope='module',
|
||||
params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
|
||||
np.uint8, np.uint16, np.uint32, np.uint64))
|
||||
def dtype(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def params_0(f):
|
||||
val = f()
|
||||
assert_(np.isscalar(val))
|
||||
val = f(10)
|
||||
assert_(val.shape == (10,))
|
||||
val = f((10, 10))
|
||||
assert_(val.shape == (10, 10))
|
||||
val = f((10, 10, 10))
|
||||
assert_(val.shape == (10, 10, 10))
|
||||
val = f(size=(5, 5))
|
||||
assert_(val.shape == (5, 5))
|
||||
|
||||
|
||||
def params_1(f, bounded=False):
|
||||
a = 5.0
|
||||
b = np.arange(2.0, 12.0)
|
||||
c = np.arange(2.0, 102.0).reshape((10, 10))
|
||||
d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
|
||||
e = np.array([2.0, 3.0])
|
||||
g = np.arange(2.0, 12.0).reshape((1, 10, 1))
|
||||
if bounded:
|
||||
a = 0.5
|
||||
b = b / (1.5 * b.max())
|
||||
c = c / (1.5 * c.max())
|
||||
d = d / (1.5 * d.max())
|
||||
e = e / (1.5 * e.max())
|
||||
g = g / (1.5 * g.max())
|
||||
|
||||
# Scalar
|
||||
f(a)
|
||||
# Scalar - size
|
||||
f(a, size=(10, 10))
|
||||
# 1d
|
||||
f(b)
|
||||
# 2d
|
||||
f(c)
|
||||
# 3d
|
||||
f(d)
|
||||
# 1d size
|
||||
f(b, size=10)
|
||||
# 2d - size - broadcast
|
||||
f(e, size=(10, 2))
|
||||
# 3d - size
|
||||
f(g, size=(10, 10, 10))
|
||||
|
||||
|
||||
def comp_state(state1, state2):
|
||||
identical = True
|
||||
if isinstance(state1, dict):
|
||||
for key in state1:
|
||||
identical &= comp_state(state1[key], state2[key])
|
||||
elif type(state1) != type(state2):
|
||||
identical &= type(state1) == type(state2)
|
||||
else:
|
||||
if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
|
||||
state2, (list, tuple, np.ndarray))):
|
||||
for s1, s2 in zip(state1, state2):
|
||||
identical &= comp_state(s1, s2)
|
||||
else:
|
||||
identical &= state1 == state2
|
||||
return identical
|
||||
|
||||
|
||||
def warmup(rg, n=None):
|
||||
if n is None:
|
||||
n = 11 + np.random.randint(0, 20)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.integers(0, 2 ** 24, n, dtype=np.uint64)
|
||||
rg.integers(0, 2 ** 48, n, dtype=np.uint64)
|
||||
rg.standard_gamma(11.0, n)
|
||||
rg.standard_gamma(11.0, n, dtype=np.float32)
|
||||
rg.random(n, dtype=np.float64)
|
||||
rg.random(n, dtype=np.float32)
|
||||
|
||||
|
||||
class RNG(object):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# Overridden in test classes. Place holder to silence IDE noise
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
@classmethod
|
||||
def _extra_setup(cls):
|
||||
cls.vec_1d = np.arange(2.0, 102.0)
|
||||
cls.vec_2d = np.arange(2.0, 102.0)[None, :]
|
||||
cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
|
||||
cls.seed_error = TypeError
|
||||
|
||||
def _reset_state(self):
|
||||
self.rg.bit_generator.state = self.initial_state
|
||||
|
||||
def test_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
state = rg.bit_generator.state
|
||||
rg.standard_normal(1)
|
||||
rg.standard_normal(1)
|
||||
rg.bit_generator.state = state
|
||||
new_state = rg.bit_generator.state
|
||||
assert_(comp_state(state, new_state))
|
||||
|
||||
def test_advance(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'advance'):
|
||||
self.rg.bit_generator.advance(self.advance)
|
||||
assert_(not comp_state(state, self.rg.bit_generator.state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
pytest.skip('Advance is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_jump(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'jumped'):
|
||||
bit_gen2 = self.rg.bit_generator.jumped()
|
||||
jumped_state = bit_gen2.state
|
||||
assert_(not comp_state(state, jumped_state))
|
||||
self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
|
||||
self.rg.bit_generator.state = state
|
||||
bit_gen3 = self.rg.bit_generator.jumped()
|
||||
rejumped_state = bit_gen3.state
|
||||
assert_(comp_state(jumped_state, rejumped_state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
if bitgen_name not in ('SFC64',):
|
||||
raise AttributeError('no "jumped" in %s' % bitgen_name)
|
||||
pytest.skip('Jump is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_uniform(self):
|
||||
r = self.rg.uniform(-1.0, 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_uniform_array(self):
|
||||
r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(np.array([-1.0] * 10),
|
||||
np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_random(self):
|
||||
assert_(len(self.rg.random(10)) == 10)
|
||||
params_0(self.rg.random)
|
||||
|
||||
def test_standard_normal_zig(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
|
||||
def test_standard_normal(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
params_0(self.rg.standard_normal)
|
||||
|
||||
def test_standard_gamma(self):
|
||||
assert_(len(self.rg.standard_gamma(10, 10)) == 10)
|
||||
assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
|
||||
params_1(self.rg.standard_gamma)
|
||||
|
||||
def test_standard_exponential(self):
|
||||
assert_(len(self.rg.standard_exponential(10)) == 10)
|
||||
params_0(self.rg.standard_exponential)
|
||||
|
||||
def test_standard_exponential_float(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32'))
|
||||
|
||||
def test_standard_exponential_float_log(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32',
|
||||
method='inv')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32',
|
||||
method='inv'))
|
||||
|
||||
def test_standard_cauchy(self):
|
||||
assert_(len(self.rg.standard_cauchy(10)) == 10)
|
||||
params_0(self.rg.standard_cauchy)
|
||||
|
||||
def test_standard_t(self):
|
||||
assert_(len(self.rg.standard_t(10, 10)) == 10)
|
||||
params_1(self.rg.standard_t)
|
||||
|
||||
def test_binomial(self):
|
||||
assert_(self.rg.binomial(10, .5) >= 0)
|
||||
assert_(self.rg.binomial(1000, .5) >= 0)
|
||||
|
||||
def test_reset_state(self):
|
||||
state = self.rg.bit_generator.state
|
||||
int_1 = self.rg.integers(2**31)
|
||||
self.rg.bit_generator.state = state
|
||||
int_2 = self.rg.integers(2**31)
|
||||
assert_(int_1 == int_2)
|
||||
|
||||
def test_entropy_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
rg2 = Generator(self.bit_generator())
|
||||
assert_(not comp_state(rg.bit_generator.state,
|
||||
rg2.bit_generator.state))
|
||||
|
||||
def test_seed(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg2 = Generator(self.bit_generator(*self.seed))
|
||||
rg.random()
|
||||
rg2.random()
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_reset_state_gauss(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.standard_normal()
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.standard_normal(size=10)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.standard_normal(size=10)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_uint32(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_float(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.random(dtype='float32')
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.random(size=10, dtype='float32')
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.random(size=10, dtype='float32')
|
||||
assert_((n1 == n2).all())
|
||||
|
||||
def test_shuffle(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_permutation(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_beta(self):
|
||||
vals = self.rg.beta(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), 2.0)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(2.0, np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
|
||||
assert_(vals.shape == (10, 10))
|
||||
|
||||
def test_bytes(self):
|
||||
vals = self.rg.bytes(10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_chisquare(self):
|
||||
vals = self.rg.chisquare(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.chisquare)
|
||||
|
||||
def test_exponential(self):
|
||||
vals = self.rg.exponential(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential)
|
||||
|
||||
def test_f(self):
|
||||
vals = self.rg.f(3, 1000, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_gamma(self):
|
||||
vals = self.rg.gamma(3, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_geometric(self):
|
||||
vals = self.rg.geometric(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential, bounded=True)
|
||||
|
||||
def test_gumbel(self):
|
||||
vals = self.rg.gumbel(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_laplace(self):
|
||||
vals = self.rg.laplace(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logitic(self):
|
||||
vals = self.rg.logistic(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logseries(self):
|
||||
vals = self.rg.logseries(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_negative_binomial(self):
|
||||
vals = self.rg.negative_binomial(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_chisquare(self):
|
||||
vals = self.rg.noncentral_chisquare(10, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_f(self):
|
||||
vals = self.rg.noncentral_f(3, 1000, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_normal(self):
|
||||
vals = self.rg.normal(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_pareto(self):
|
||||
vals = self.rg.pareto(3.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_poisson(self):
|
||||
vals = self.rg.poisson(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.poisson(np.array([10] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.poisson)
|
||||
|
||||
def test_power(self):
|
||||
vals = self.rg.power(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_integers(self):
|
||||
vals = self.rg.integers(10, 20, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_rayleigh(self):
|
||||
vals = self.rg.rayleigh(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.rayleigh, bounded=True)
|
||||
|
||||
def test_vonmises(self):
|
||||
vals = self.rg.vonmises(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_wald(self):
|
||||
vals = self.rg.wald(1.0, 1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_weibull(self):
|
||||
vals = self.rg.weibull(1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_zipf(self):
|
||||
vals = self.rg.zipf(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.zipf(self.vec_1d)
|
||||
assert_(len(vals) == 100)
|
||||
vals = self.rg.zipf(self.vec_2d)
|
||||
assert_(vals.shape == (1, 100))
|
||||
vals = self.rg.zipf(self.mat)
|
||||
assert_(vals.shape == (100, 100))
|
||||
|
||||
def test_hypergeometric(self):
|
||||
vals = self.rg.hypergeometric(25, 25, 20)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_triangular(self):
|
||||
vals = self.rg.triangular(-5, 0, 5)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.triangular(-5, np.array([0] * 10), 5)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_multivariate_normal(self):
|
||||
mean = [0, 0]
|
||||
cov = [[1, 0], [0, 100]] # diagonal covariance
|
||||
x = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_zig = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_inv = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
assert_((x_zig != x_inv).any())
|
||||
|
||||
def test_multinomial(self):
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
|
||||
assert_(vals.shape == (2,))
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
|
||||
assert_(vals.shape == (10, 2))
|
||||
|
||||
def test_dirichlet(self):
|
||||
s = self.rg.dirichlet((10, 5, 3), 20)
|
||||
assert_(s.shape == (20, 3))
|
||||
|
||||
def test_pickle(self):
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
def test_seed_array(self):
|
||||
if self.seed_vector_bits is None:
|
||||
bitgen_name = self.bit_generator.__name__
|
||||
pytest.skip('Vector seeding is not supported by '
|
||||
'{0}'.format(bitgen_name))
|
||||
|
||||
if self.seed_vector_bits == 32:
|
||||
dtype = np.uint32
|
||||
else:
|
||||
dtype = np.uint64
|
||||
seed = np.array([1], dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(1)
|
||||
state2 = bg.state
|
||||
assert_(comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(4, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(1500, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
|
||||
self.seed_vector_bits - 1) + 1
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
def test_uniform_float(self):
|
||||
rg = Generator(self.bit_generator(12345))
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.random(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.random(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_gamma_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_zig_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_output_fill(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
sized = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=sized, size=sized.shape)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_uniform(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_exponential(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma_broadcast(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
mu = np.arange(97.0) + 1.0
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_fill_error(self):
|
||||
rg = self.rg
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_normal(out=existing[::3])
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float64)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float64)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
|
||||
existing = np.zeros(size, dtype=np.float64)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3])
|
||||
|
||||
def test_integers_broadcast(self, dtype):
|
||||
if dtype == np.bool_:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
self._reset_state()
|
||||
a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([lower] * 10, upper, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
self._reset_state()
|
||||
c = self.rg.integers(lower, upper, size=10, dtype=dtype)
|
||||
assert_equal(a, c)
|
||||
self._reset_state()
|
||||
d = self.rg.integers(np.array(
|
||||
[lower] * 10), np.array([upper], dtype=object), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, d)
|
||||
self._reset_state()
|
||||
e = self.rg.integers(
|
||||
np.array([lower] * 10), np.array([upper] * 10), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, e)
|
||||
|
||||
self._reset_state()
|
||||
a = self.rg.integers(0, upper, size=10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([upper] * 10, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
|
||||
def test_integers_numpy(self, dtype):
|
||||
high = np.array([1])
|
||||
low = np.array([0])
|
||||
|
||||
out = self.rg.integers(low, high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low[0], high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low, high[0], dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
def test_integers_broadcast_errors(self, dtype):
|
||||
if dtype == np.bool_:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([0], [0], dtype=dtype)
|
||||
|
||||
|
||||
class TestMT19937(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.advance = None
|
||||
cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 32
|
||||
cls._extra_setup()
|
||||
cls.seed_error = ValueError
|
||||
|
||||
def test_numpy_state(self):
|
||||
nprg = np.random.RandomState()
|
||||
nprg.standard_normal(99)
|
||||
state = nprg.get_state()
|
||||
self.rg.bit_generator.state = state
|
||||
state2 = self.rg.bit_generator.state
|
||||
assert_((state[1] == state2['state']['key']).all())
|
||||
assert_((state[2] == state2['state']['pos']))
|
||||
|
||||
|
||||
class TestPhilox(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestSFC64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 192
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestPCG64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestDefaultRNG(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# This will duplicate some tests that directly instantiate a fresh
|
||||
# Generator(), but that's okay.
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = np.random.default_rng(*cls.seed)
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
def test_default_is_pcg64(self):
|
||||
# In order to change the default BitGenerator, we'll go through
|
||||
# a deprecation cycle to move to a different function.
|
||||
assert_(isinstance(self.rg.bit_generator, PCG64))
|
||||
|
||||
def test_seed(self):
|
||||
np.random.default_rng()
|
||||
np.random.default_rng(None)
|
||||
np.random.default_rng(12345)
|
||||
np.random.default_rng(0)
|
||||
np.random.default_rng(43660444402423911716352051725018508569)
|
||||
np.random.default_rng([43660444402423911716352051725018508569,
|
||||
279705150948142787361475340226491943209])
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng(-1)
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng([12345, -1])
|
||||
Reference in New Issue
Block a user