Files
cs5500_parallel_prog/FinalProject/main.cpp
2020-04-13 11:21:35 -06:00

201 lines
5.4 KiB
C++

#include <fstream>
#include <iostream>
#include <mpi.h>
#include <vector>
#include "Serialize_Deserialize_Vector.h"
#define MCW MPI_COMM_WORLD
using namespace std;
using sdv = Serialize_Deserialize_Vector;
//Problem size
int N;
//global variables
std::vector<std::vector<double> > A = std::vector<std::vector<double> >(0, std::vector<double>(0));
std::vector<std::vector<double> > B = std::vector<std::vector<double> >(0, std::vector<double>(0));
std::vector<std::vector<double> > AB = std::vector<std::vector<double> >(0, std::vector<double>(0));
std::vector<std::vector<double> > AB_serial = std::vector<std::vector<double> >(0, std::vector<double>(0));
void print_matrix(std::vector<std::vector<double> > mat);
void serial_version();
void compute_interval(int start, int interval);
void multiplyMatrix(int rank, int size);
void read_in_matrices();
int main(int argc, char** argv){
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MCW, &rank);
MPI_Comm_size(MCW, &size);
multiplyMatrix(rank, size);
MPI_Finalize();
}
void read_in_matrices() {
ifstream f("Matrix.txt");
f >> N;
// Allocate memory
A.resize(N);
for (int i = 0; i < N; ++i)
A[i].resize(N);
B.resize(N);
for (int i = 0; i < N; ++i)
B[i].resize(N);
AB.resize(N);
for (int i = 0; i < N; ++i)
AB[i].resize(N);
AB_serial.resize(N);
for (int i = 0; i < N; ++i)
AB_serial[i].resize(N);
// Fill Matricies
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
f >> A[i][j];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
f >> B[i][j];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
AB[i][j] = 0;
}
//Function to print matrix
void print_matrix(std::vector<std::vector<double> >mat) {
for (int i = 0; i < N; i++){
for (int j = 0; j<N; j++){
cout << mat[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
// Serial multiplication works.
void serial_version(){
for (int i = 0; i <N; i++){
for (int j = 0; j < N;j++){
AB_serial[i][j] = 0;
for (int k = 0; k <N; k++){
AB_serial[i][j] += A[i][k]*B[k][j];
}
}
}
}
//Compute interval multiplication
void compute_interval(int start,int interval){
for(int i = start; i <start+interval;i++){
for (int j = 0; j <N; j++){
AB[i][j] = 0;
for (int k = 0; k <N; k++){
AB[i][j] += A[i][k]*B[k][j];
}
}
}
}
void multiplyMatrix(int rank, int size){
//timing variables
double time1,time2,time3;
//compute interval size
//rank 0 responsible for remainder
//Rank 0 fills the matrices and computes the remainder
if(!rank){
read_in_matrices();
}
MPI_Bcast(&N, 1, MPI_INT, 0, MCW);
if(rank) {
A.resize(N);
for (int i = 0; i < N; ++i)
A[i].resize(N);
B.resize(N);
for (int i = 0; i < N; ++i)
B[i].resize(N);
AB.resize(N);
for (int i = 0; i < N; ++i)
AB[i].resize(N);
}
// Record start time
MPI_Barrier(MCW);
time1 = MPI_Wtime();
int interval = N / size;
int remainder = N % size;
MPI_Bcast(&interval, 1, MPI_INT, 0, MCW);
MPI_Bcast(&remainder, 1, MPI_INT, 0, MCW);
if (!rank) {
compute_interval(size * interval, remainder);
}
//Broadcast Matrix B and scatter relevant portions of Matrix A
std::vector<double> tmpB = std::vector<double>(N*N);
tmpB = Serialize_Deserialize_Vector::Serialize(B);
MPI_Bcast(&tmpB[0],N*N,MPI_DOUBLE,0,MCW);
if(rank)
B=Serialize_Deserialize_Vector::Deserialize(tmpB);
//print_matrix(B);
std::vector<double> tmpA = std::vector<double>(N*N);
tmpA = Serialize_Deserialize_Vector::Serialize(A);
MPI_Bcast(&tmpA[0], N*N, MPI_DOUBLE, 0, MCW);
// MPI_Scatter(&tmpA[0], interval * N, MPI_DOUBLE, &tmpA[rank * interval], interval * N,
// MPI_DOUBLE, 0, MCW);
if(rank)
A=Serialize_Deserialize_Vector::Deserialize(tmpA);
//print_matrix(A);
//Each processor cumputes the interval they are responsible for
compute_interval(rank*interval,interval);
//Gather results
auto tmp_AB = Serialize_Deserialize_Vector::Serialize(AB);
// cout << "RANK: " << rank << " INTERVAL: "<< interval << " rank*N " << rank*N << " tmp_AB.size() "<<tmp_AB.size() << " " ;
// std::vector<double> tmp(interval*N);
// for(int i = (rank * interval*N),j=0; i < (rank * interval*N)+N; i++, j++){
// tmp[j]=tmp_AB[i];
// cout << tmp[j]<<" ";
// }
// cout << endl;
// std::vector<double> test(N*N);
MPI_Gather(&tmp_AB[rank * interval*N], interval * N, MPI_DOUBLE, &tmp_AB[rank*interval*N],
interval * N, MPI_DOUBLE, 0, MCW);
AB=Serialize_Deserialize_Vector::Deserialize(tmp_AB);
if(!rank)
print_matrix(AB);
//Record parallel finish time
MPI_Barrier(MCW);
time2 = MPI_Wtime();
if (!rank){
cout << "made it here!!" <<endl;
//serial computation
serial_version();
//Record serial finish time
time3 = MPI_Wtime();
//Print times
cout << "Problem size " << N << endl;
cout << size << " processors computed in time: " << time2-time1 << endl;
cout << "Serial version computed in time: " << time3-time2 << endl;
cout << "Efficiency of: " << (time3-time2)/((time2-time1)*size) << endl;
//Code to print matrices and results
cout << "Matrix A: " << endl;
print_matrix(A);
cout << "multiplied Matrix B:" << endl;
print_matrix(B);
cout << "serial version gives:" << endl;
print_matrix(AB_serial);
cout << "gives matrix AB:" << endl;
print_matrix(AB);
}
}